SM490A 結構用鋼同質銲接之特性研究

洪榮德¹ 連聰賢¹ 曾莉雅¹ 施柏仰² 林新智^{2*} 林昆明³

¹振鋒企業股份有限公司 ²台灣大學 材料科學與工程學系 ³逢甲大學 材料科學與工程學系

摘要

熱軋鋼板經過銲接後,材料之各種特性有機會因銲接接合而產生巨幅變化,在實際使用中,可能會發生各種不同的破壞現象,故在各種機械主體結構的銲接製程裡,須能有效掌握熱應力所產生的變形量與殘留應力, 並進行有效設計。本實驗採用多道次銲接,採用包藥銲線電弧銲(Flux Cored Arc Welding, FCAW)製程並輔以遮 蔽氣體 CO₂,搭配相當於美國銲接協會之 AWS A5.20 E70T-1 規格之包藥銲條執行 JIS G3106 SM490A 結構用鋼 同質焊接,藉由不同銲接參數之控制,進而分析銲後材料特性之變化,包括銲件之銲道化學成分、銲道與熱影 響區之微觀組織、機械性質測試、電化學測試其抗腐蝕性等。

實驗結果顯示:熱影響區及其中下層的銲道在經過多道次銲接後,會受到一類似回火或正常化的熱處理過 程,可消除區域上的不良組織,並有效的提升韌性、降低粗晶區的硬度,故較高入熱量的製程會有較高的衝擊 值,其拉伸強度也會隨著入熱量升高而下降;腐蝕性質方面,在動極化曲線中顯示同質銲接的銲道其腐蝕電流 比母材來得小,代表其腐蝕速率較慢,有較母材為佳的抗腐蝕性。隨著入熱量的上升,其銲道的腐蝕電位差異 不大,而腐蝕電流下降,有較佳的抗腐蝕性質;而在循環極化曲線的測試中可以了解材料的抗孔蝕性,隨著入 熱量的減小,銲道會從均勻腐蝕的性質轉變為有輕微的孔蝕現象。

關鍵字:SM490A 結構用鋼、同質銲接、機械性質、腐蝕特性

1. 前言

在現代工業技術上,運用銲接技術將金屬結合,大多以 惰性氣體遮蔽金屬電弧銲接(Inert-Gases Shield Metal Arc Welding)為主要加工步驟,而以銲線來做區別的話,惰性 氣體遮蔽金屬電弧銲乃使用實心銲線,而使用包藥銲線的銲 接方法則稱之為包藥銲線金屬電弧銲(Flux-Cored Arc Welding, FCAW),包藥銲線在受熱後會分解產生氣體來保護 電弧,視情況再通入惰性氣體,則可達到雙重保護的作用, 可適用於造船、石化、核電、國防及機械製造等工業製程, 並且可運用於生活環境的基礎建築中。

銲接由於施工便利、接合形狀自由、氣密性佳和快速接 合的特性,故在各種金屬結構中常常可以看到銲接製程的運 用。在銲接的過程中,合金鋼構件經歷一急速加熱和冷卻過 程,其組織可分為銲道(weld metal)和熱影響區(heat affected zone)。銲道的性質可以藉由挑選適當的合金成分銲條來改 善其機械性質;而熱影響區往往是極硬的組織,韌性相對較低,在使用上常常是造成破壞的根源,為了提升材料在使用 上的安全性,銲接前材料須經一系列的熱機加工及後熱處

理,以使組織及強度達到所需的規範。

在多重銲接的銲道中,最初的銲道與鄰近的熱影響區, 受後繼第二層銲道再加熱的影響,會使之與相鄰區域的顯微 組織再度發生變化,此區域稱之為再熱區(reheated zone), 而未受影響的區域稱之為原熔區(primary fusion zone)。再熱 區佔整體銲道的比例影響材料的性質甚鉅,其與銲接次數及 入熱量大小有關。

然而SM490A經過銲接後的機械性質、抗腐蝕性質常受 到銲條合金成份、入熱量和遮蔽氣體的影響,此次研究主要 目的是針對鋼板吊掛夾頭構件之銲接技術與製程參數做一 詳實且系統性的研究與探討,其品質的好壞,則是依賴銲接 實務上的經驗作為設計的依據,為符合在銲接現場之銲接製 程設計以及減少不必要的變數,本研究選用之鋼板為9 mm,透過文獻蒐集整理與材料實驗分析等工作,藉以精進 鋼板吊掛夾頭構件之銲接技術應用於吊鉤具之各種性能。

2. 實驗方法

本研究主要探討不同的銲接製程參數下,進行三道次的 同質銲接,並觀察其顯微組織變化,配合機械性質和腐蝕性 質測試,以瞭解不同製程參數對微結構和材料性質的影響。

2.1 母材

SM490A 為工業界常用之銲接結構用軋延鋼,添加少量 鈮(Niobium)合金元素,透過控制軋延的技術而得到的均匀 細晶,且具有析出強化特性,為銲接結構用鋼中的重要鋼 種。SM490A 鋼板之主要成分列於表一^[2],根據日本工業標 準 JIS 相關規定^[1], JIS G3106 SM490A 厚度小於 16mm 的 鋼板,拉伸實驗數據與其規範相關比較列於表二,顯示此材 料符合 JIS G3106 的規格之鋼板。

(%)	С	Mn	Р	S	Si	Al	Nb
SM490	0.12	1.06	0.02	0.006	0.01	0.032	0.023
表一 母材合金成分							

	Yield Strength (MPa)	Tensile Strength (MPa)	Elongation (%)
JIS G3106 SM490A	≧325	490-610	≧17
Test Result SM490A	457	537	17.3
* -	IIC旧然内家的	(ab/ 1-15 , 1 + 2-	

表二 JIS 規範與實驗數據比較

2.2 FCAW

包藥銲線金屬電弧銲(FCAW)屬於消耗性電極的銲接, 為提高銲道強度,可採用過匹配(over-matching)之銲接方 式,亦即銲道抗拉強度高於母材抗拉強度來選用銲料,由此 可知其銲料選擇之不同會對銲接性能有顯著的影響。本實驗 SM490A 同質對銲接使用銲料為天泰 TM-70C 包藥銲線^[3], 直徑為 1.2mm,其規格相當於美國銲接協會之 AWS A5.20 E70T-1。原廠所附之化學成份如表三所示,表四所示為銲料 機械性能,開槽設計如圖一所示。

(wt%)	Fe	С	Mn	Р	S	Si
E70T-1	Bal.	0.05	1.47	0.017	0.01	0.55
		主こ。但	伯人会亡	· 八		

	Yield strength (MPa)	Tensile strength (MPa)	Elongation (%)
E70T-1	549	598	26

表四 銲線機械性能

2.3 銲接参数設定

本實驗所使用之銲接製程參數有三種,入熱量也有所不 同,其使用之依據為參考規範之建議及使用者經驗設計,如 表五所示。為方便計算,我們把變動的電流及電壓取中間值 代入方程式(1)計算其入熱量的大小並編號。同質銲接試片 的編號由入熱量的上升,分別標上 SA、SB、SC,如表五所 示:

$$Q = \frac{I * V}{S} \tag{1}$$

(Q:熱輸入量,I:電流,V:電壓,S:走速)

No	Welding layer		Total heat input			
	·	Current (A)	Voltage (V)	Speed (mm/s)	Heat input (KJ/mm)	(KJ/mm)
<u> </u>	D. (175	25.5		1.015	(072
SA	Root	1/5	25.5	2.33	1.915	6.0/3
	Second layer	170	27.5	2.33	2.006	
	Surface	170	29.5	2.33	2.152	
SB	Root	165	24.5	2	2.021	6.421
	Second layer	160	26.5	2	2.12	
	Surface	160	28.5	2	2.28	
SC	Root	185	27.5	2.5	2.035	6.427
	Second layer	180	29.5	2.5	2.124	
	Surface	180	31.5	2.5	2.268	

表五 同質銲接製程參數對入熱量影響

2.4 顯微組織觀察

2.4.1 光學顯微鏡觀察

將不同製程條件的試片切取下來,鑲埋於電木粉中以 SiC 砂紙由#240、#400、#600、#800、#1000、#1500、#2000 (依序研磨,再利用氧化鋁粉拋光至 0.05µm,以酒精洗淨後, 將之置入丙酮中藉由超音波振盪機洗淨殘留氧化鋁粉顆 粒,試片取出後以 5%Nital 腐蝕液腐蝕(5%HNO3+98%無水 酒精),清洗吹乾後觀察。本實驗利用光學顯微鏡 OM 為主、 掃描式電子顯微鏡 SEM 為輔,觀察其金相組織,藉以了解 不同的製程其顯微組織的差異。

2.4.2 TEM 試片製作及觀察

將銲道及熱影響區粗晶區分別標示出來,利用精密切割 儀器切取直徑 3mm、長 10mm 的圓棒,並使用慢速切割機 切取約 200µm 的薄片,用砂紙研磨至 70µm 左右,利用 twin-jet 電解拋光機進行電解拋光(jet polish),其電解拋光溶 液採用 5%過氯酸(HClO₃) + 20%甘油 + 75%酒精,而拋光溫 度在-15℃~~10℃之間。本研究使用 JEOL JEM 100CXII 穿透 式電子顯微鏡,操作電壓為 100KV,利用此穿透式電子顯 微鏡協助我們觀察各種不同的顯微組織。

2.5 機械性質測試

2.5.1 拉伸試驗(tensile test)

依照 AWS D1.1^[4]規定, 試件之尺寸如圖二所示, 並依 ASTM E8 進行試驗, 所使用的負載率為 20mm/min。拉伸試 驗系對試件施加拉力以量測試件的機械性質, 主要在比較不 同製程其抗拉強度的差異, 並找出材料的斷裂位置在母材或 是銲道, 以做為銲接結構的設計及分析。

圖二 拉伸試片規範

2.5.2 衝擊試驗 (Charpy-notch impact test)

衝擊試驗之目的為比較材料之靭性,試片上有一凹槽, 以擺錘從一定之高度擺下將試片擊斷,以量取試片破斷時所 吸收之能量來表示韌性的大小,以比較不同製程之銲道及熱 影響區其韌性的差異。之後再使用 SEM 觀察其斷面,藉由 觀察斷面,嘗試找出試片破裂的機制。依照 AWS D1.1^[4]規 定,將鋼板切成 10mm x 7.5mm x 55mm 之衝擊試片,在銲 道及熱影響區分別取 2mm 的開口,試片依 ASTM E23 規範 進行試驗,試片取樣位置如圖三所示,試件之尺寸如圖四所 示。

圖三 衝擊試片側開口取樣位置

圖四 衝擊試片規範

2.5.3 破斷面顯微組織觀察

衝擊後的試片,將破斷面妥善保護,以快速切割機切下 破斷的一端,以SEM 觀察破斷面之顯微組織。此處斷口是 針對衝擊斷口,主要觀察重點在各試件的韌窩、撕裂脊線與 其他斷口特徵的分佈情形,以判定不同製程對斷口特徵所造 成的影響。

2.5.4 彎曲試驗

試片依 AWS D1.1^[4]製作, 銲冠及銲根均須加工磨平, 將鋼板切成 40mm x 9mm x 150mm 試件之尺寸, 如圖 3-11 所示。實驗以 ASTM E190-92 規範進行, 彎曲試驗是為了確 保金屬在受到彎曲時有足夠的韌性使材料不至於破裂,主要 是用來評定銲接接頭的塑性和緻密性。彎曲試驗分為橫向正 面彎曲和背面彎曲,正面彎曲測試為銲冠朝下,壓頭從上方 壓下,使得銲冠受到最大的彎曲; 背面彎曲測試則是銲根朝 下, 試片彎曲半徑(壓頭半徑)均依規定進行, 方法如圖五、 圖六所示。

圖五 ASTM E190-92 彎曲試片

圖六 彎曲試驗示意圖

2.5.5 維氏硬度試驗

銲件橫截面以砂紙研磨後拋光,經 5%nital 腐蝕後,對

銲冠、中層銲道和銲根進行硬度試驗,分別對銲道、HAZ
及母材做量測,以協助金相顯微組織之分辨。量測時所採用
的荷重為 200g,以銲道中心點起,每隔 0.5mm 量測一個微
硬度值,待進入熱影響區後,改為每隔 0.25mm 量測一個硬
度值,直至進入母材。間距主要取決於減少同性質區域的重
覆量測並避開上一量測點的塑性區以保有準確性。

2.6 腐蝕性質測試-電化學試驗

本實驗電化學試驗分別進行下列二項實驗,包含動電位 極化曲線測試(potentiodynamic polarization curve test)及循環 極化曲線測試(cyclic polarization curve test),以了解母材及 各種銲道表層在中性 3.5wt%NaCl 水溶液(人工海水)的環境 裡對腐蝕的敏感性。

3. 結果與討論

3.1 母材顯微組織

圖七為母材各種位置的顯微組織,我們可以發現 SM490A 其晶粒沿滾軋方向會有黑色帶狀組織出現,明顯看 出其方向性;根據文獻指出^[5],合金鋼添加微量鈮(Nb)元 素,可藉由它所形成的碳、氮析出物,有效的阻止晶界的移 動,達到晶粒細化的效果,並阻止軋延後鋼材的再結晶,使 得沃斯田鐵晶粒被軋成扁平狀,具固溶強化及析出強化的效 果。而又有文獻指出^[6],鈮的析出物在超過1200℃下,將會 固溶於沃斯田鐵中,使得硬度有所提升。

圖七 母材金相組織

合金鋼在經過銲接之後,其熱影響區裡的顯微組織會因 銲接入熱量及其本身之合金成份不同而有所差異,隨著受熱 時最高溫的尖峰區域不同,距離融熔區的遠近將可決定其晶 粒大小,其中主要又可區分為四個區域:粗晶區(Coarse grain zone)、細晶區(Fine grain zone)、部分變態區(Partially transformed zone)及回火區(Tempered zone)。其中粗晶區距 離銲道最近,最高溫度較高,停留在沃斯田鐵化 (Reaustenization)的時間最久,形成過熱粗化的組織,使該部 位衝擊韌性降低,工業上皆利用多重銲接來減少粗晶區的比 例,由圖中我們可以看到 SM490A 粗晶區大都為針狀肥粒 鐵及少量的晶界肥粒鐵及費德曼肥粒鐵。而細晶區則距離銲 道較遠,沃斯田鐵晶粒較小,其冷卻速率也較慢,此時晶粒 較細小、機械性質較佳。值得一提的是,通常合金鋼加入鈮 的最主要考量是在於它的晶粒細化及析出硬化,而 SM490A 中含有鈮析出物,但鈮析出物穩定性不佳(大於1200℃時重 熔),在經過銲接程序後,其熱影響區的粗晶區因尖峰溫度 較高, 鈮析出物將固溶於沃斯田鐵中而消失^[7], 所以在粗晶 區很難發現此一鈮析出物,但在細晶區其尖峰溫度較低,仍 可觀察到楕圓形狀的鈮析出物小顆粒存在,圖八為 TEM 電 子顯微鏡下細晶區觀察到之鈮析出物,其大小約在 100nm 附近。

圖八 SM490A 細晶區之之鈮析出物

銲道原熔區內的組織相當複雜,包括晶界肥粒鐵(grain boundary ferrite)、費德曼肥粒鐵(Widmanstatten ferrite)、針 狀肥粒鐵(acicular ferrite)、夾雜物(inclusion)和微觀相 (Micro-phase)...等等 在晶粒內部觀察到許多交錯的典型針 狀肥粒鐵平板,圖九為在 TEM 電子顯微鏡下銲道原熔區所 觀察到的針狀肥粒鐵,其外觀有如透鏡狀,長寬比約為5: 1~10:1之間;而在約略平行的費德曼肥粒鐵平板間,會有 黑色的條狀 micro-phase 形成,由圖中可知此 micro-phase 為 殘留波來鐵,如圖十所示。圖十一則為銲道再熱區所觀察到 之等軸晶肥粒鐵。

圖十 Micro-phase 殘留波來鐵

圖九 針狀肥粒鐵

圖十一 再熱區之等軸晶肥粒鐵

3.2 機械性質測試

3.2.1 拉伸試驗

因為銲接試片為一強度不均匀的試片,在進行拉伸試驗 時,塑性應變將集中在強度最低的部分發生,在這種情況 下,局部的應變將導致比正常標距低的伸長率,所以此銲接 試片的拉伸試驗可作為抗拉強度的評定,但不能用來評定降 伏強度^[8]。同質銲接的試片經過拉伸後破壞在 SM490A 的 熱影響區部分,顯示所有試件銲道的強度皆大於熱影響區, 在銲接實務上為一種相當重要的性質。 在同質銲接的三種製程抗拉強度皆較母材為高,得知 SM490A 在經過一系列熱處理過程後,會使得抗拉強度上 升,適合用於銲接構造用途。其抗拉強度,隨著銲接入熱量 上升其強度會有些微的下降,但三種製程其差異性並不大, 逐列於表六比較。

	抗拉強度(MPa)	伸長率 EL
SM490	537	17.3%
SA	606	26.47%
SB	600	25.68%
SC	599	23.78%

表六 拉伸試驗結果比較

3.2.2 維氏硬度試驗

熱影響區的硬度值是銲接可銲度(weldability)之評估準 則,硬度的增加總是會伴隨著金屬脆性的增加與塑性變形之 降低,也是我們是否進行銲接預熱及銲後熱處理的標準^[4]。 過去研究發現,未經後置熱處理之銲道熱影響區硬度值會受 母材化學成份、銲道層數及冷卻速率影響,而藉由硬度試驗 將協助我們分辨材料中顯微組織的差異。

將各種製程之試片分為銲冠、中間銲道及銲根以適當間 距取點做微硬度測試(Hv),因不同銲接參數,而有不同的入 熱量及熱循環過程,其殘留應力、相的比例及固溶元素皆有 所差異,故所測到的微硬度值亦有所不同。結果表示於圖十 二、圖十三、圖十四。

觀察同質銲接件在 SM490A 熱影響區的硬度可以發現,接近銲道的硬度值會有明顯上升的現象,可能的原因有 二:一是因其冷卻速率較慢,其主要的顯微組織均為費德曼 肥粒鐵與針狀肥粒鐵,推擠原有的母材,使得殘留應力大 增,造成此區的硬度值上升比母材更高,而事實上費德曼肥 粒鐵平板間存在著 Microphases,這些 Microphases 的相會影 響我們所量測到的硬度值,所以即使在同一條件下測得的費 德曼肥粒鐵的硬度值亦有所差異;二是據文獻指出^[6],在 SM490A 粗晶區中,由於尖峰溫度較高且停留時間較長, Nb的析出物將固溶於沃斯田鐵中,而固溶的 Nb 會降低 $\gamma \rightarrow \alpha$ 的變態溫度(Ar₃)以致增加此一區域的硬度。隨著遠離銲道, 殘留應力影響愈小,我們可以發現硬度會有逐漸下降的趨 勢,而硬度持續下降至回火區後,此時殘留應力對材料影響 不大,且回火晶粒較粗大,所以在此區硬度會達到一最低 值,而後漸漸回升到母材硬度。 在銲道的部分,因為成分不均勻以及相的差異,硬度跳 動的範圍較大,以銲冠來說, SA 硬度值相對較高,其原因 推測有二:一是其有 SA 有最小入熱量,冷卻速率最快, Gowrisankar^[9]認為冷卻速率的不同,其冷卻時的收縮量就有 所不同,故冷卻速率快其收縮量較大,容易出現殘留應力, 當殘留應力高於降伏強度時,便出現應變硬化的現象,於是 會出現較高的硬度值;二是據 Dorschu 及 Stout^[10]研究指出, 不同合金含量會對硬度造成影響,其中錳含量的影響較大, 並指出在較高的入熱量下,其銲道中錳含量會減少,並造成 其硬度的下降。而中層銲道及銲根的部分,我們可以發現其 硬度值較最上層銲冠為低,乃因其受到上層銲道熱循環的影 響,產生一類似退火作用,使得銲道內殘留應力大為降低, 然而其不同製程之硬度已無明顯的差異。

圖十二 銲冠及其熱影響區

圖十三 中層銲道及其熱影響區

圖十四 銲根及其熱影響區

彎曲試驗是測試材料抵抗外力的能力,同時也可以檢測 銲道的優良程度,若是因錯誤的製程參數設計,則容易使銲 道產生銲孔,通常這些銲孔會是破裂紋的成核位置,而在銲 接材料的試驗中,我們分為正面彎曲和反面彎曲來做測試, 本彎曲試驗共計有六種試片,根據AWS1.1 4.8.3.3 規定彎 曲試驗驗收標準,並對已經彎曲之試片凸面的表面進行目視 檢測,觀察是否有缺陷之產生,合格的試片表面有以下限制:

- 1. 表面上任何方向裂縫不得大於 1/8inch(3mm)。
- 所有超過 1/32inch(1mm)但小於或等於 1/8inch(3mm)
 的缺陷,總和不得大於 3/8inch(9.5mm)
- 3. 最大角部裂痕(Corner crack)1/4inch(6mm),若角部裂 痕由可見夾渣或其他融化型缺陷所致,則裂紋最大值只 能為1/8inch(3mm)。

圖十五為六種試片的測試情形。根據試驗結果,我們可 以得知同質銲接則皆有良好的彎曲韌性,不易產生裂紋。

圖十五 左:由上而下依序 SA 正彎、SB 正彎、SC 正彎; 右:由上而下依序 SA 反彎、SB 反彎、SC 反彎。

3.2.4 衝撃試驗

本實驗為測試實際使用狀況下,多重銲接對銲道及粗晶

3.2.3 彎曲試驗

區衝擊性質改善程度,將每種製程的銲道及其熱影響區做成 衝擊試驗用的 Charpy V-notch 試片規格,其開槽在側邊, 並在室溫 25°C 下進行衝擊試驗,並將實驗所得之衝擊值做 比較,結果示於表七。衝擊試片的觀察為圖十六~圖十八

從實驗結果可以得知, 銲道抗衝擊性質較好, 衝擊值平 均皆較高, 因配合其在實際使用上之需求, 製作試片取樣 時, 我們將選擇將大部分性質較差之原熔區除去, notch 開 槽部分絕大部分由再熱區所組成,從顯微組織可知再熱區大 部分為等軸狀的肥粒鐵晶粒所組成。此晶粒尺寸是影響鋼材 塑性的一個重要參數, 裂縫核的形成會在晶界差排堆疊的地 方發生, 此時堆疊在此處的剪切應力為 n*t(n:差排數量、t: 滑動方向的剪切應力),較小的晶粒尺寸代表在到達晶界滑 動帶之差排堆疊數量較少,所以在晶界上的局部應力集中也 會相對的降低, 不論差排結合、差排堆疊或雙晶交互作用機 構時,產生裂縫成核的情形均會降低; 換句話說, 裂紋的前 進沿著此等軸晶界前進, 其裂紋前進的方向一直在改變, 也 就是說, 其緩和了裂紋的前進, 使裂紋前進的阻力增加, 故 其有較佳之衝擊值。

在銲道衝擊試片的掃描式電子顯微鏡觀察中,如圖十七 所示, 銲道皆呈現出延性破壞的特徵, 我們可以發現其中產 生很多窩穴, 每一個凹處上存在一硬顆粒, 經過 EDX 分析 得知其為碳化物或氧化物, 由於這些 inclusion 較銲道硬脆, 為裂縫成核的位置, 在塑性變形的過程中造成應力集中, 而 形成延性破壞的斷面^[11]。

隨著入熱量的下降,其在入熱量較小的 DA 銲道部分, 我們發現有較低的衝擊值,據文獻指出,其在較快冷卻的速 率時,會產生較多的晶內偏析現象,而有較多的 inclusion 產生,而後雖然再熱至沃斯田鐵化溫度,但此 inclusion 並 不會溶入銲道中,而是一直存在著,推測此體積分率較多之 inclusion 乃其延性下降的原因^{[10][11]}。

因為粗晶區是銲接物件中最脆弱的區域,破斷裂紋常常 在熱影響區的粗晶區中成長,故在熱影響區粗晶區能承受多 少衝擊能,即可代表此銲件的最大抗衝擊能力,故熱影響區 粗晶區的抗衝擊性,直接影響銲接條件的好壞。在銲接後的 衝擊實驗部分,由於實際銲接過程中,有經過開槽的步驟, 且銲道常會有彎曲及弧度產生,以致在衝擊實驗中裂紋常穿 過熱影響區中幾個不同的區域。

在 SM490 及其熱影響區的部分,其衝擊值皆比原材來 得低,推測因為入熱量較高,使得再熱區產生較佳韌性的細 晶區比例較高,此與前面拉伸實驗中所做的推論相符合;除 此之外,由於晶界上、晶粒內部析出富含 Nb 之碳化物,碳 化物之量亦會隨著入熱量較大而較多,碳化物愈多則消耗基 地之 Nb 原子量愈大,而造成基地析出強化相減少,同時也 使基地塑性變形更容易,吸收之衝擊能較高,因此我們可以 發現衝擊值會有上升的現象。

此外,觀察 SM490A 熱影響區之破斷面,可發現一多 邊形狀之夾雜物,根據文獻指出^[12],並經由 EDX 鑑定(圖十 九),判斷其為顆粒為硫化錳 MnS,為一鋼鐵中常見之夾雜 物。

	平均值(I)	標準差
SM490A	12.512	0.250791
HAZ-SA	8.08	0.75896
HAZ-SB	8.44	0.680468
HAZ-SC	8.69	0.470208
W-SA	17.21	0.586228
W-SB	17.00	1.220092
W-SC	19.44	0.666107

表七 衝擊試驗結果

圖十七 銲道衝撃破斷面觀察左上:SA;右上;SB左下:SC

圖十八 SM490A 熱影響區觀察
 左上: SA ; 右上; SB
 左下: SC

圖十九 硫化錳及其 EDX

3.3 腐蝕性質測試

3.3.1 動電位極化曲線測試

電化學量測主要比較母材及各個製程銲道表面之抗腐 蝕性能力高低,由於開路電位量測只能得到腐蝕趨勢資訊, 欲求腐蝕速率需利用動電位極化曲線量測結果來加以討 論。觀察動電位極化曲線圖可知,在電流最小值的位置所對 應的電位值為腐蝕電位(corrosion potential),用來研判其腐 蝕趨勢,並根據 Tafel 外插法(Tafel extrapolation)可得腐蝕電 流(corrosion current),可約略代表材料腐蝕速率。

Tafel 外插法假定在腐蝕電位±50mV 區域附近,外加電 壓與電流的對數有 Tafel 公式的線性關係,然而,大部分的 情況並不是如此單純,在此腐蝕電位±50mV 區域並不一定 會是線性關係,而本實驗中以線性極化法(linear polarization method)來輔助我們判別腐蝕速率,以減少實驗所得誤差。

線性極化法為目前最通用的腐蝕速率測定方法,在電流 更低的情況時,大約在腐蝕電位±10mV 的範圍內,外加電 壓與電流密度也會呈現一線性關係,圖二十分別為母材及不 同銲道之動電位極化曲線圖,表八為其腐蝕資訊。

由圖可知同質銲接其銲道在外加電壓範圍內均未有鈍 化區存在;三種製程中腐蝕電位並沒有明顯差異,而腐蝕電 流則隨著入熱量上升而下降,我們可發現入熱量最低的 SA 製程相較於 SB、SC 製程,其腐蝕電流密度高了近 2 個 order,其極化電阻值則低了將近 3 個 order,顯示其抗腐蝕 性較差。

由文獻記載可知,入熱量的提高有可能造成晶粒的粗 化,晶粒愈大則晶界的總量愈少,而材料的晶界本身乃一種 缺陷,腐蝕反應往往會由此處發生;再者,入熱量的上升會 造成銲道中晶界肥粒鐵增加、針狀肥粒鐵減少,而針狀肥粒 鐵含有較高的差排密度,一般認為其抗腐蝕性較差,當入熱 量低其含量上升,會使得材料的抗腐蝕性變差。而銲道中碳 化物的析出則會讓腐蝕電位稍微下降,整體而言,銲道具有 較母材為佳的腐蝕電位,在工程應用上,在此 3.5wt%NaCl 水溶液的環境裡,銲道會有較母材為佳的抗腐蝕性。

圖二十 母材及銲銲之動電位極化曲線圖

	腐蝕電位	腐蝕電流	極化電阻
	(mV)	(A/cm^2)	(ohm*cm ²)
BM-SM490	-699	5.578*10 ⁻⁵	6.082*10 ²
WM-SA	-665	5.31 x 10 ⁻⁶	5.876*10 ³
WM-SB	-669	3.38 x 10 ⁻⁸	1.156*10 ⁶
WM-SC	-652	2.69 x 10 ⁻⁸	1.408*10 ⁶

表八 動電位極化曲線圖之腐蝕資訊

3.3.2 循環極化曲線測試

為了獲得更多的腐蝕資訊,我們利用循環極化曲線的測 試,來判斷試片的表面是否有孔蝕的發生,圖二十一為母材 SM490A 在中性 3.5wt%NaCl 水溶液環境下之循環極化曲 線,由圖中我們可以發現 SM490A 無明顯鈍化區,呈現一 正向孔蝕遲滯圈(Positive Pitting hysteresis loop)的現象,表示 其發生孔蝕或鈍化膜破裂後癒合能力差,會使孔蝕繼續生成 或是擴大孔蝕的孔洞,一般而言其遲滯圈面積愈大代表其發 生孔蝕的傾向亦越大,此結果與我們前面開路電位所量測的 結果符合,可得知 SM490A 較易有孔蝕之傾向。

在圖二十二為同質銲接銲道的循環極化曲線及其數 據,表九為母材及銲道之腐蝕資訊,我們可以發現其循環極 化曲線其皆呈現一負向孔蝕遲滯圈(negative pitting hysteresis loop),代表其未發生孔蝕或鈍化膜破裂後再癒合 能力佳,其並無鈍態特徵產生,由圖中我們無法得知材料鈍 態電位,而孔蝕電位則無明顯差異。

圖二十一 母材之循環極化曲線

圖二十二 銲道之循環極化曲線

	BM-SM4	SA	SB	SC
	90A			
腐蝕電位 (mV)	-684	-737	-671	-660
腐蝕電流(A/cm ²)	3.312*10 ⁻⁵	3.79*10-6	5.733*10-6	3.88*10-7
孔蝕電位(mV)	148	320	271	204
保護電位(mV)	-632	242	-	-

表九 循環極化曲線圖之腐蝕資訊

4. 結論

- 多重銲道可有效減少熱影響區中粗晶區的比例,改善材料之性質,其中再熱區所佔之比率影響材料的性質 甚鉅。
- 在拉伸試驗與衝擊試驗中,同質銲接之試片其破斷位置在 SM490A 的熱影響區,強度隨著入熱量上升而下降,但差異並不大,其衝擊值則隨著入熱量上升而上升。
- 硬度試驗中,靠近銲道的熱影響區會因殘留應力的影響,而有最高的硬度值,而後在回火區有一最低的硬度;多道次銲接造成的熱循環影響可有效的減少粗晶區的硬度,而入熱量較小的製程會使得銲道的硬度較大。
- 彎曲試驗中,背彎的試片因其銲道之晶粒細化,有較 佳抵抗變形之能力,皆未出現裂紋。
- 極化曲線的觀察中,SM490A 沒有鈍態區的出現;而 在同質銲接的銲道因入熱量變小而有腐蝕電流上升 的趨勢。
- 循環極化曲線可觀察試片生成之鈍態膜其孔蝕產生的難易度,在母材 SM490A 有一正的孔蝕遲滯圖,可 得知其有較大的孔蝕傾向;在同質銲接的銲道則皆為 一負的孔蝕遲滯圖,有良好的抗孔蝕能力。

參考文獻

- JIS G3106-2004 Rolled Steels for Welded Structure(2004)
- [2] 中國鋼鐵公司鋼板品質證明(2008)
- [3] 天泰銲材工業-軟鋼及490高張力鋼用/FCAW-G (2008)
- [4] ANSI/AWS D1.1/D1.1M:2002 Structural Welding CodeSteel (2002)
- [5] 黃慶淵,"含鈮鋼板銲接熱影響區顯微組織研究",台 大材料所與中國鋼鐵公司建教合作案,P11。(1990)
- [6] Najma Shams, Jounal of Materials, 1985, p.21.
- [7] M.N.Waton, P.L.Harrison and R.A. Farrar, Welding and Metal Fabrication, 1981, p.101.
- [8] 中船公司電銲作業手冊-銲接試驗(1995).

- [9] I. Gowrisankar, A. K. Bhaduri, V. Seetharaman, D. D. N. Verma, D. R. G. Achar, "Effect of Number of Passes on the Structure and Properties of Submerged Arc Welds of AISI Type of 316L," Welding JOURNAL, Vol66, 1987, p.147-p.154.
- [10] Gladman, Effect of Second-phase Particle on the Mechanical Properties of Steel, Iron and Steel Interstitute, 1971.
- [11] J.F.Knott, Fundamentals of Fracture Mechanics, Butterworth, 1973.
- [12] T.J. Baker and J.A. Charles, Deformation of MnS inclusions in steel, J. Iron Steel Inst. 210 (1972), p.680–p.690.