雷翔宇^a,陳榮志^b、林俊其^a、胡毅^a

^a大同大學材料工程學系 (Department of Materials Engineering, Tatung University)

^b中國鋼鐵股份有限公司(China Steel Corporation)

摘要

傳統低溫封裝玻璃有著機械強度高、封裝溫度低、化學穩定性好的優點,廣泛用於顯示 器、電子元件及基板等產品的封接,由於玻璃中含有鉛的成分易造成環境上的汙染,開發無 鉛低熔點玻璃成為目前相當重要的研究方向。本研究就 B2O3-V2O5-P2O5-ZnO系低熔點玻璃, 進行熱處理析晶行為之分析。除了改變 V2O5/B2O3、ZnO/B2O3的比例外,並研究添加 BaO、 TiO2, Nd2O3 等氧化物對於晶行為之影響。玻璃結構以傳利葉轉換紅外線(FTIR)進行分析。析 晶行為是以熱差分析儀(DTA)與熱機械分析儀(TMA)分析玻璃各項熱特性,以 x-光繞射儀分 析析晶之結晶相,並以掃描式電子顯微鏡(SEM)觀察顯微結構的變化。結果得知玻璃熱處理 後產生的析晶相主要為 ZnV2O6。研究亦發現玻璃析晶溫度隨著添加劑含量的增加而提高。 玻璃結構的變化是影響玻璃析晶行為的主要原因。

一、前言

封裝玻璃已經廣泛的運用在照明燈泡、陰極射線管、平面顯示器、電子元件與基板,因 此封裝玻璃具有相當的商業價值。傳統含鉛的低溫封裝玻璃有著機械強度高、封裝溫度低、 化學穩定性好的優點,被廣泛地應用。隨著環保意識的抬頭以及 2006 年歐盟宣布了進入歐 洲的電子產品不得含鉛等有害的物質,因此推動了封裝玻璃無鉛化研究。目前主要的無鉛低 溫封裝玻璃主要是以磷酸鹽、氨酸鹽、硼酸鹽系統為主[1-5]。例如 Masahiro[6]等開發的 V₂O₅-ZnO-BaO-P₂O₅ 系統的低熔點玻璃有不錯的熱穩定性且軟化溫度(Ts)介於 310~416℃。 由於磷酸鹽系統具有低熔點 Tm、低玻璃轉換溫度 Tg,熱膨脹係數適中可應用範圍較廣近年 來逐漸被發展與研究,尤其是在低溫封裝玻璃的運用一般來說玻璃的黏度與化學耐蝕性的趨 勢為黏度大化學耐蝕性較佳例如矽酸鹽玻璃黏度高熔融溫度高且化學耐蝕性好,但是磷酸鹽 系玻璃的熔融溫度較低,黏度也低,通常化學耐蝕性不佳。因為磷酸鹽系玻璃結構由 PO4 四 面體所組成之長鏈狀結 [7],易受水的侵蝕而使長鏈斷鍵脫落,導致在水中之溶解速率很快, 有文獻提到可以藉由添加高價的陽離子如 Fe₂O₃、Al₂O₃等等來改善[5]。

然而在封裝玻璃的研究上還是有許多可以改進的地方,因為每一種基材所需的特性不同, 對於封裝玻璃而言我們必須改變各種特性來應付不同應用的需求,例如熱膨脹係數必須與基 材相近否則熱處理後因為熱膨脹係數的不同而使得基版可能產生彎曲的現象,黏度必須夠低 足以在封裝過程中流動,而化學耐久性(chemical durability)要在可接受的範圍,然而黏度越 低的玻璃其熱膨脹係數越高,化學耐久性就會越差,在如此多的性質中找到一個最適合的成 分以及熱處理的條件以符合封裝的需求在選擇上就有很大的研究空間了。本研究根據以上的 資料設計一組主成分 B₂O₃-Bi₂O₃-V₂O₅-P₂O₅-ZnO 系統,透過改變 V₂O₅/B₂O₃、ZnO/B₂O₃ 的 比例以及添加劑等變數製備出不同玻璃粉,以研究分析玻璃的熱處理特性。

二、實驗步驟

表1為本研究之玻璃成分組成。主成分為 B2O3-Bi2O3-V2O5-P2O5-ZnO。原料為化學等級 之氧化物,純度均為98%。將所調配好的粉末均勻混合後,裝入坩堝內並使用一般的高溫 爐作第一階段的熱處理,先以5℃/min 升溫速率加熱到250℃維持1小時,之後再以10℃/min 升溫速率加熱到700℃維持1小時候爐冷,此一加熱過程目的是,藉由加熱過程使粉體進行 反應形成化合物,以避免低熔點的原料在高溫時沸滾濺出。

經過第一階段熱處理的樣品隨後放入高溫 800℃ 的升降爐中,快速升溫至 1150℃ 持溫 一小時使其均質化,隨即將熔融的玻璃液體澆注到石墨模具上急速冷卻形成玻璃,之後將冷 卻後的玻璃以研缽磨碎後放入球磨罐進行球磨 24 小時將其磨成粉末。此粉體經過篩後進行 檢測。為了研究熱處理對於玻璃析晶相的生成,將磨好的粉末使用油壓機將其壓製成錠狀, 再分別作 400℃、500℃、550℃的燒結處理,作 x-光繞射(XRD)、傳立葉轉換紅外線光譜(FTIR)、 熱差分析(DTA)、熱機械分析儀(TMA)、掃描式電子顯微鏡(SEM)等量測等實驗。

	B_2O_3	V_2O_5	P_2O_5	ZnO	BaO	TiO ₂	Nd ₂ O ₃
A1	45	5	10	40			
A2(C1,B3)	40	10	10	40			
A3	35	15	10	40			
B1	45	10	10	35			
B2	50	10	10	30			
C2	40	10	10	40	1	1	1
C3	40	10	10	40	3	3	3
C4	40	10	10	40	6	6	6

表1各玻璃成分之比例(mol%),其中A2、C1、B3 為同一成份。

三、結果與討論

圖1與圖2分別為成分A與B系列以及C系列玻璃之DTA曲線圖。這些玻璃之DTA與TMA 熱分析實驗數據經整理後列於表1。以A系列玻璃而言,玻璃的轉換溫度(Tg)與第一析晶溫度 (T_{p1})隨著V₂O₅/B₂O₃比例增加而下降,以B系列玻璃而言,Tg與T_{p1}隨著ZnO/B₂O₃比例增加而 上升。根據Xie [**8**]的研究P₂O₅-B₂O₃-ZnO玻璃系中以V₂O₅替代了P₂O₅,因為P₂O₅為層狀結構, 而V₂O₅為鏈狀結構,增加了V₂O₅的含量使得鏈狀結構增加,使得結構變的鬆散,導致軟化 點溫度下降。本實驗結果亦符合此一趨勢,B₂O₃形成四面體結構增強了網狀結,構以V₂O₅ 替代了B₂O₃,產生了V=O雙鍵,破壞了玻璃之網狀結構,使得Tg,Ts(軟化點),T_{p1}下降。 另外,在被報導的BaO-B₂O₃-ZnO玻璃系統[**1**],經由改變B₂O₃/ZnO及BaO/ZnO的比例研究其 特性,結果驅勢與本研究相同,Tg隨著ZnO/B₂O₃比例增加而上升。玻璃中加入ZnO的主要 目的在使玻璃成分均匀與結構穩定。主要是因為時ZnO含量的增加,促使Zn²⁺離子以[ZnO4] 四面體的形式參與到硼氧網路中,使玻璃中非橋氧的數量大大減少,玻璃網狀結構更為緻密, 也因此提高了Tg與T_{p1}。

以C系列玻璃而言,玻璃的轉換溫度(Tg)與第一析晶溫度(Tp1)隨著添加BaO、TiO₂、Nd₂O₃ 等添加劑比例增加而上升。一般而言,BaO做為玻璃修試劑,將破壞玻璃網狀結構,降低Tg。 不過,由於 Zn^{2+} 離子的存在,並且由於 Ba^{2+} 離子有較高的離子場強度,具有較高的離子極化 能力,與 Zn^{2+} 離子形成對偶極造成氧多面體的變形大,反而有利於非晶態的形成。 $TiO_2 \cdot Nd_2O_3$ 等添加劑常被做為成核促進劑, TiO_2 配位數有變為6,並且不佔據玻璃形成體的位置, $[TiO_6]$ 八面體的存在削弱了玻璃網路結構,這可作為解釋隨 TiO_2 含量增加,熱穩定性參數減小的原 因之一。然而本實驗結果卻發現 $TiO_2 \cdot Nd_2O_3$ 含量增加,析晶峰 T_{p1} 卻上升,原因可能是由於 Ti^{4+} 與Nd³⁺的離子場強度改變所致,而且 TiO_2 含量較少時,尤其存在酸性氧化物 B_2O_3 存在的 同時, Ti^{4+} 處於四配位 $[TiO_4]$,而不是六配位 $[TiO_6]$, Ti^{4+} 產生"補網"作用,變成網路形成體, 因此提升了 T_{p1} 。

圖 3 與圖 4 分別為成分 A 與 B 系列以及 C 系列玻璃經 500℃ 熱處理後之 XRD 繞射圖。 根據實驗結果來看各個樣品在經過 400℃燒結時都尚未出現析晶相,熱處理到 500℃、550℃ 才出現析晶相。由 XRD 圖譜可以發現所有玻璃所析出的析晶相為 ZnV₂O₆,這說明 Zn²⁺與 V⁵⁺在玻璃結構中是較不穩定的成分。C1~C4 的析晶情形並不顯著即使熱處理到 550℃特徵 峰也不顯著,正好印證了 T_{p1}上升的結果。

圖 5 與圖 6 分別為成分 A 與 B 系列以及 C 系列玻璃之 FTIR 光譜圖。磷酸鹽玻璃由(PO₄) 四面體所組成,單位四面體之間彼此鍵結的情形不同可以用 Qⁱ[9]表示,i 為四面體中架橋氧 的數目。對 A 系列玻璃而言,V₂O₅ 含量增加取代了 B₂O₃造成了 P=O,Q³(1280~1390cm⁻¹)以 及 B-O,[BO₃](1300~1500cm⁻¹)這個兩種鍵結的重疊區段的吸收峰強度降低。除了因 B₂O₃減少 造成[BO₃]的鍵結數目減少之外,推測 V=O 雙鍵的形成,使得玻璃中架橋氧的數目減少,連 帶的破壞了磷四面體的結構,P=O(Q³)吸收峰也降低。另外 P-O-P(asymmetric, 840~1050cm⁻¹)、 (PO₂),Q² 吸收峰的強度下降,且 Q² 吸收峰隨著 V₂O₅的增加由 1280cm⁻¹移向 1170cm⁻¹。說 明[PO4]四面體中架橋氧的數目有減少的趨勢。對於 B 系列玻璃而言,ZnO 含量增加,有助 於網狀結構的形成,造成 1300~1500cm⁻¹ 吸收峰強度增加,推測是由[BO₄]鍵結量增加所致。 相對地 P-O-P 的吸收峰隨著[BO₄]鍵結量增加而減弱,B-O-P 吸收峰強度則是隨之增加。對 C 系列玻璃而言,加入了添加劑後,(PO₂),Q² 吸收峰向低波數移動(1255→1174cm⁻¹),P-O-P 的吸收峰也向低波數移動(828→779cm⁻¹),表示添加劑離子(Ba²⁺,Ti⁴⁺)打斷了 P-O-P 鍵結進 入了網狀結構中,而根據 Ts 的上升表示添加劑離子進入網狀結構使其結構更加緊密。

圖 7 為 C 系玻璃粉體經壓胚後於 500℃/1h 熱處理之 SEM 顯微結構圖。由於玻璃軟化點 (Ts)隨著添加劑含量的增加而上升,因此試片緻密化的程度隨添加劑含量的增加而下降。另 外,從 C1 及 C2 之顯微結構表面形貌上可以發現微小晶粒,尺寸小於 0.2 m。這與由 XRD 計算之晶粒尺寸大約為 125nm 相當接近。

四、結論

本研究 B₂O₃-Bi₂O₃-V₂O₅-P₂O₅-ZnO 成分經二階段製程製作成玻璃粉體,再進行熱分析 實驗。結果玻璃的轉換溫度(Tg)與第一析晶溫度(T_{p1})隨著 V₂O₅/B₂O₃比例增加而下降,以B 系列玻璃而言,Tg 與 Tp1 隨著 ZnO/B₂O₃比例增加而上升。以C 系列玻璃而言,玻璃的轉 換溫度(Tg)與第一析晶溫度(Tp1)隨著添加 BaO、TiO₂、Nd₂O₃等添加劑比例增加而上升。從 FTIR 光譜圖亦證實此一結果,對A 系列玻璃而言,V₂O₅含量增加取代了 B₂O₃造成了玻璃 中架橋氧的數目減少,連帶的破壞了磷四面體的結構。對於 B 系列玻璃而言,ZnO 含量增 加,有助於網狀結構的形成,B-O-P 吸收峰強度則是隨之增加。對 C 系列玻璃而言,加入了 添加劑後離子(Ba²⁺,Ti⁴⁺)後打斷了 P-O-P 鍵結進入了網狀結構中,使其結構更加緊密。

五、致謝

本研究承蒙100年度中國鋼鐵股份有限公司提供研究經費,計畫編號:RE100612,中國鋼,特此誌謝。

六、參考文獻

- [1] D.-N. Kim, J.-Y. Lee, J.-S.Huh, H.-SA. Kim, "Thermal and electrical properties of BaO–B2O3–ZnO glasses" Journal of Non-Crystalline Solids, 306 (2002)70–75.
- [2] H. Masuda, R. Kimura, N. Ssakamoto, et al. "Properties and structure of glasses in the system BaO-B203-ZnO", J. Jpn. Inst. Met. 63 (1999) 284 ~ 288
- [3] I.W. Donald , B. L. Metcalfe , S. K. Fong , et al. "The Influence of Fe₂O₃ and B₂O₃ Additions on the Thermal Properties, Crystallization Kinetics and Durability of a Sodium Aluminum Phosphate Glass," Non-Cryst. Solids, 352 (2006)2993–3001.
- [4] M. Shapaan, E. R. Shabaan, A. G. Mostafa, "Study of the Hyperfine Structure, Thermal Stability and Electric–Dielectric Properties of Vanadium Iron Phosphate Glasses", Physica B, 2009, 404(2009) 2058–2064.
- [5] X. Yu, D. E. Day, G. J. Long, R. K. Brow ,"Properties and structure of sodium-iron phosphate glasses", J. Non-Cryst. Solids, 215 (1997) 21-31.
- [6] Y. Masahiro, H. Yasuo, U. Toshimitsu, et al. "Lead-free Glass Material for Use in the Sealing and Sealed Article and Method for Sealing Using the Same," US Pat.: US7585798B2, 2009–09–08.
- [7] B. Zhang, Q. Chen, L. Song, H. Li, F. Hou, J. Zhang , "Fabrication and properties of novel low-melting glasses in the ternary system ZnO–Sb2O3–P2O5" Journal of Non-Crystalline Solids, 354 (2008) 1948–1954.
- [8] J. Li, Z.-H. Xie, Q.-S. Zhu, H. TONG, J.-G. Wang, L. Peng, "Property of Lead-free Low Melting Glass of P₂O₅-V₂O₅-B₂O₃-ZnO System for Electronic Sealing Application" The Chinese Journal of Process Engineering, Apr. 2010.
- [9] F. Liebau, in: M. O'Keefe, A. Novrotsky (Eds.), Structure and Bonding in Crystals II. Academic Press, New York, 1981, pp. 197.

表 2 各成分玻璃的熱分析特性,包括玻璃轉換溫度(Tg)、

	A1	A2	A3	B1	B2	C1(A2)	C2	C3	C4
Tg(°C)	490	445	410	425	415	445	460	475	490
Tp1(°C)	580	520	470	500	490	520	575	590	600
Ts(°C)	407	462	410	393	373	484	510	523	532
α(*10 ⁻⁶ °C ⁻¹)	6.41	4.04	3.51	8.49	7.41	4.15	5.68	7.40	4.04

第一析晶峰溫度(T_{p1})、軟化點(T)及熱膨脹係數(α)

圖1成分A與B系列玻璃之DTA曲線圖。

圖2成分C系列玻璃之DTA曲線圖。

圖 3 A 與 B 系玻璃經 500°C/1h 熱處理之 XRD 繞射圖。▼: ZnV₂O₆

圖 4 C 系玻璃經 500°C/1h 熱處理之 XRD 繞射圖。▼: ZnV₂O₆

圖5 A與B系玻璃之FTIR光譜圖。

圖 6 C 系玻璃之 FTIR 光譜圖。

圖 7 為 C 系玻璃經 500°C/1h 熱處理之 SEM 顯微結構圖。